Amplifier Built-in Type for General Purpose # Small and light, common type photoelectric sensor #### ■ Features - Easy to mount at a narrow space with small size and light weight. - Convenient to adjust the sensitivity by external sensitivity adjustment contol. - (Applied to diffuse reflective type only) - •Easy to mount by screw type in mounting hole. - •Reverse power polarity protection circuit. # Specifications | Model | | BM3M-TDT | BM1M-MDT | BM200-DDT | |------------------------|------------|---|------------------------------------|---| | Sensing type | | Transmitted beam | Retroreflective | Diffuse reflective | | Sensing distance | | 3m | (*1) 0.1 ~ 1m | (* 2) 200mm | | Sensing target | | Opaque materials of
Min. ∮8mm | Opaque materials of
Min. ø 60mm | Transparent, Translucent,
Opaque materials | | Hysteresis | | | | Max. 10% at rated setting distance | | Response time | | Max. 3ms | | | | Power supply | | 12-24VDC ±10% (Ripple P-P : Max. 10%) | | | | Current consumption | | Max. 45mA | 45mA Max. 40mA | | | Light source | | Infrared LED(modulated) | | | | Sensitivity adjustment | | Fixed Adjuster | | Adjuster | | Operation mode | | Dark ON Light ON | | Light ON | | Control output | | NPN open collector output > Load voltage : Max. 30VDC, Load current : Max. 100mA,
Residual voltage : Max. 1V | | | | Protection circuit | | Reverse polarity protection | | | | Indication | | Operation indicator : Red LED | | | | Connection | | Outgoing cable | | | | Insulation resistance | | Min. 20MΩ (at 500VDC mega) | | | | Noise strength | | $\pm 240 \text{V}$ the square wave noise (pulse width: $1\mu\text{s}$) by the noise simulator | | | | Dielectric strength | | 1,000VAC 50/60Hz for 1minute | | | | Vibration | | 1.5mm amplitude at frequency of 10 \sim 55Hz in each of X, Y, Z directions for 2 hours | | | | Shock | | 500m/s ² (50G) in X, Y, Z directions for 3 times | | | | Ambient illumination | | Sunlight: Max. 11,000/x, Incandescent lamp: Max. 3,000/x | | | | Ambient temperature | | -10 ~ +60℃ (at non-freezing status), Storage: -25 ~ +70℃ | | | | Ambient humidity | | 35 ~ 85%RH, Storage : 35 ~ 85%RH | | | | Material | | Case: ABS, Lens: PMMA | | | | Cable | | $3P(2P \text{ for Transmitted beam type}), \phi 4mm, Length: 2m$ | | | | Accessories | Individual | | Reflector(MS-2) | Adjustment driver | | | Common | Fixing bracket, Bolts/nuts | | | | Approval | | C€ | | | | Unit weight | | Approx. 170g | Approx. 105g | Approx. 88g | **^{**(★1)}**It is mounting distance between sensor and reflector MS-2 and it is same when MS-5 is used. It is detectable under 0.1m. (A) Counter (B) Timer (C) Temp. controller (D) Power controller (E) Panel meter (F) Tacho/ Speed/ Pulse meter (G) Display unit (H) Sensor controller (I) Switching power supply (J) Proximity sensor #### (K) Photo electric sensor (L) Pressure sensor (M) Rotary encoder (N) Stepping motor & Driver & Controller (O) Graphic panel (P) Field network device (Q) Production stoppage models & replacement Autonics K-30 **^{*(*2)}**It is for Non-glossy white paper(100×100mm) # **BM Series** #### ■ Feature data #### **Transmitted** beam #### ●BM3M-TDT #### **©**Retroreflective #### ●BM1M-MDT #### **O**Retroreflective #### ●BM1M-MDT # Reflector angle characteristic Measuring method Data Reflector(MS-2) (ED) 100 θ L Retroreflective Retroreflective θ L #### ODiffuse reflective #### ●BM200-DDT K-31 Autonics # Amplifier Built-in Type for General Purpose ## **■**Control output diagram ## **■**Operation mode ## Connections #### Dimensions 52 60.5 2-ø3.8 Product Bracket Sensitivity adjuster 286-05 286-05 36-05 0-04 0-04 £ ⊕ 5 € 36 7 51.5 15 ₩ **()** Optical 16 Operation indicato CABLE: Ø4, 2m 7.8 16 0.2 46.3 Autonics 50.5 27.7 3.8 51.3 **(** \⊕ Autonics 39.5 M4 BOLT ___ There is M4 tapped 37. hole (H) Reflector M4 BOLT M4 BOLT < MS-2 > $\langle MS-5 \rangle$ 40.5 15.4 34 12 Bracket 50.5 (A) Counter (B) Timer (C) Temp. controller (D) Power controller (E) Panel meter (F) Tacho/ Speed/ Pulse meter (G) Display unit (H) Sensor controller (I) Switching power supply (J) Proximity sensor #### (K) Photo electric sensor (L) Pressure sensor (M) Rotary encoder (N) Stepping motor & Driver & Controller (O) Graphic panel (P) Field network device (Q) Production stoppage models & replacement Autonics 20.6 2-7.82-4.2 K-32 (Unit:mm) 3 - 4.2 **⊕ ⊕** ### Mounting and sensitivity adjustment #### OTransmitted beam type - 1. Supply the power to the photoelectric sensor, after set the emitter and the receiver facing each other. - 2. Set the receiver in the middle of the operation range of indicator adjusting the receiver or the emitter right and left, up and down. - 3. Adjust up and down direction as the same. - 4. After adjustment, check the stability of operation putting the object at the optical axis. - *If the sensing target is translucent body or smaller than φ8mm, it can be missed by sensor because light penetrate it. #### ODiffuse reflective type - 1. The sensitivity should be adjusted depending on a sensing target or mounting place. - 2. Set the target at a position to be detected by the beam, then turn the adjuster until position ⓐ where the indicator turns on from min. position of the adjuster. - 3. Take the target out of the sensing area, then turn the adjuster until position ⓑ where the indicator turns on. If the indicator does not turn on, Max. position is position ⓑ. - 4. Set the adjuster at the center of two switching position (a), (b). *The sensing distance indicated on specification chart is for 200×200mm of non-glossy white paper. Be sure that it can be different by size, surface and gloss of target. #### ©Retroreflective type - 1. Supply the power to the photoelectric sensor, after set the emitter and the reflector(MS-2) facing to each other. - 2. Set the reflector or photoelectric sensor in the middle of the operation range of indicator adjusting the mirror or the sensor right and left, up and down. - 3. Adjust up and down direction as the same. - 4. After adjustment, check the stability of operation putting the object at the optical axis. - *If use more than 2 photoelectric sensors in parallel, the space between them should be more than 30cm. *If reflectance of target is higher than non-glossy white paper, it might cause malfunction by reflection from the target when thr target is nead to photoelectric sensor. Therefore enough space between the target should be used and photoelectric sensor or the surface of target should be installed at an angle of $30^{\circ} \sim 45^{\circ}$ against optical axis. **If the installing place is too small, please use MS-5 instead of MS-2 for same sensing distance. K-33 Autonics